Lens Examples

Explore different lens types with detailed calculations using the lens maker formula. Each example includes real-world applications and typical parameter values.

Use Calculator Now →

Quick Reference

Converging Lenses (f > 0)

  • • Biconvex: R₁ > 0, R₂ < 0
  • • Plano-convex: R₁ > 0, R₂ = ∞ (or vice versa)
  • • Positive Meniscus: Both radii same sign, |R₁| < |R₂|

Diverging Lenses (f < 0)

  • • Biconcave: R₁ < 0, R₂ > 0
  • • Plano-concave: R₁ < 0, R₂ = ∞ (or vice versa)
  • • Negative Meniscus: Both radii same sign, |R₁| > |R₂|

Biconvex Lens

Converging
(( ))

Both surfaces curve outward. Most common converging lens.

Parameters

R₁ = +10 cm
R₂ = −10 cm
n = 1.5
f = +10 cm

Applications

Magnifying glassesCamera lensesEyeglasses for farsightedness

Biconcave Lens

Diverging
)( )(

Both surfaces curve inward. Common diverging lens.

Parameters

R₁ = −10 cm
R₂ = +10 cm
n = 1.5
f = −10 cm

Applications

Eyeglasses for nearsightednessLaser beam expandersPeepholes

Plano-convex Lens

Converging
| )

One flat surface, one convex surface.

Parameters

R₁ = +20 cm
R₂ =
n = 1.5
f = +40 cm

Applications

FlashlightsCondenser lensesLaser focusing

Plano-concave Lens

Diverging
| (

One flat surface, one concave surface.

Parameters

R₁ = −20 cm
R₂ =
n = 1.5
f = −40 cm

Applications

Beam expansionOptical instrumentsProjection systems

Positive Meniscus

Converging
( (

Both surfaces curve same direction, but converging.

Parameters

R₁ = +10 cm
R₂ = +20 cm
n = 1.5
f = +40 cm

Applications

Corrective eyewearCamera accessoriesOptical correction

Negative Meniscus

Diverging
) )

Both surfaces curve same direction, but diverging.

Parameters

R₁ = +20 cm
R₂ = +10 cm
n = 1.5
f = −40 cm

Applications

EyeglassesOptical systemsBeam shaping

Detailed Calculation Example

Problem: Design a biconvex lens with f = 5 cm

Given: Glass with n = 1.52, equal radii of curvature (|R₁| = |R₂| = R)

Step 1: Apply the formula with R₁ = +R, R₂ = −R

1/f = (n − 1)(1/R₁ − 1/R₂)

1/0.05 = (1.52 − 1)(1/R − 1/(−R))

20 = 0.52 × (2/R)

Step 2: Solve for R

R = 2 × 0.52 / 20 = 0.052 m = 5.2 cm

Result: Use R₁ = +5.2 cm, R₂ = −5.2 cm

Try Your Own Calculations

Use our calculators to explore different lens configurations.